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On Filtering the Noise from the Random Parameters
in Monte Carlo Rendering

PRADEEP SEN and SOHEIL DARABI
UNM Advanced Graphics Lab

Monte Carlo (MC) rendering systems can produce spectacular images but
are plagued with noise at low sampling rates. In this work, we observe
that this noise occurs in regions of the image where the sample values
are a direct function of the random parameters used in the Monte Carlo
system. Therefore, we propose a way to identify MC noise by estimating
this functional relationship from a small number of input samples. To do
this, we treat the rendering system as a black box and calculate the statistical
dependency between the outputs and inputs of the system. We then use
this information to reduce the importance of the sample values affected
by MC noise when applying an image-space, cross-bilateral filter, which
removes only the noise caused by the random parameters but preserves
important scene detail. The process of using the functional relationships
between sample values and the random parameter inputs to filter MC noise
is called Random Parameter Filtering (RPF), and we demonstrate that it
can produce images in a few minutes that are comparable to those rendered
with a thousand times more samples. Furthermore, our algorithm is general
because we do not assign any physical meaning to the random parameters,
so it works for a wide range of Monte Carlo effects, including depth of
field, area light sources, motion blur, and path-tracing. We present results
for still images and animated sequences at low sampling rates that have
higher quality than those produced with previous approaches.
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input Monte Carlo data (8 samples/pixel) reference rendering (8K samples/pixel)

Fig. 1. Our algorithm takes as input a small set of Monte Carlo samples
which are fast to compute but very noisy. We then estimate the functional
dependency between the sample values and the random parameters used in
the rendering system, which enables us to filter out the MC noise without
blurring scene detail. The result is comparable to a rendering with a large
number of samples but more than 100× faster. This path-traced image
shows the result of our method along with sections of the input rendering at
8 samples/pixel and the reference at 8,192 samples/pixel for comparison.

1. INTRODUCTION

Monte Carlo (MC) rendering systems can produce beautiful, photo-
realistic images by simulating light transport through a series of
multidimensional integrals at every pixel of the image: integration
of the radiance over the aperture of the camera, over the area light
sources of the scene, over the time the shutter is open, etc. For a
pixel in the image I (i, j ), this process can be written as

I (i, j ) =∫ i+ 1
2

i− 1
2

∫ j+ 1
2

j− 1
2

. . .

∫ 1

−1

∫ 1

−1

∫ t1

t0

f (x, y, · · ·, u, v, t) dt dv du · · · dy dx.

MC renderers estimate these integrals by taking many point samples
of the scene function f (), a black-box, functional representation of
the ray-tracing system given a specific scene. This sampling process
involves tracing rays with sets of random parameters that correspond
to the dimensions of integration, for example, t (the moment in time
of the ray for motion blur), u and v (the position of the ray on the
aperture of the camera for depth of field) and so on.

If we evaluate the scene function at enough of these multidi-
mensional samples, the MC rendering system will converge to the
actual value of the integral, resulting in a physically correct image.
Unfortunately, the variance of the estimate of the integral decreases
as O(1/N ) with the number of samples, so while we can get a
noisy approximation within a few minutes (as shown in the left
inset of Figure 1), we usually need a long time (as much as a day
per image) to get a result that is acceptable for high-end rendering
applications, shown in the right inset. This limits the use of Monte
Carlo rendering systems in modern digital film production.

An obvious way to try to address this problem is to apply a noise
reduction filter to the noisy image. Indeed, this approach has been
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(a) Input MC (8 spp) (b) Dependency on (u, v) (c) Our approach (RPF)

Fig. 2. (a) depth-of-field (DoF) scene rendered at 8 samples/pixel (spp).
The MC noise is similar to the noisy texture of the in-focus quad, so a
bilateral filter that removes the noise will also remove this detail. (b) Our
approach estimates the functional dependency of the sample color on the
random position on the lens, (u, v). The in-focus quad is dark because its
color is not a function of (u, v), but the dependency increases as the quads
get more out of focus. (c) Result of our algorithm, which applies a bilateral
filter to the samples in (a) but weights the color using the dependency in (b).

explored by researchers in the past but with limited success. The
fundamental problem is that filters cannot easily determine what
is unwanted noise (introduced by the MC integration process) and
what is valid scene content. To see why, we consider the application
of a bilateral filter [Tomasi and Manduchi 1998], which preserves
edges in the image by blending samples using weights computed
from the differences in position as well as sample value, thereby
avoiding blending samples together whose values differ greatly.

Unfortunately, bilateral filters work poorly for filtering general
Monte Carlo noise, such as that in Figure 2(a). This depth-of-field
(DoF) scene has three quads with noisy textures, with only the
closest quad in focus. When rendered at 8 samples/pixel, the MC
integration process produces noise in the blurred regions because
rays from a pixel in these areas hit different parts of the quads and
therefore have widely varying colors. A bilateral filter that uses
the sample color to preserve the texture detail in the in-focus quad
would also preserve the DoF noise, because here the color variations
for both are very similar. This is why previous methods that use
scene features for bilateral filtering do not work for general MC
effects.

In this work, we propose a way to use bilateral filters to effec-
tively reduce general MC noise while preserving scene detail. We
begin with the observation that sample features are functions of the
random parameters in the noisy regions of the image. In a DoF
scene, for example, any ray through the lens from a focused point
x, y on the image will land on the same point on the scene, re-
gardless of where on the lens the random point is located. So if the
surface is diffuse, the color of these samples will not be a function
of the random lens position (i.e., the scene function f () is constant
with respect to u, v for these x, y) so these regions are not noisy.
For pixels out of focus, on the other hand, the random lens position
affects the final color of the sample. Here, the sample color will be
a function of the random parameters, which is why these regions
look noisy in the first place (the random parameters act as a noise
generator)1. Our key insight is that if we estimate these functional

1MC rendering systems always compute perfect, noise-free samples of scene
function f () given a set of random parameters. The noise we are referring
to here lies in the differences (i.e., variance) between sample values, which

relationships, we can reduce the importance of features that de-
pend on random parameters during bilateral filtering to reduce MC
noise.

Unfortunately, finding the functional relationship between sam-
ple features and the random parameters in closed, mathematical
form is impossible for complex scenes. Furthermore, finding where
f () is constant with respect to the random parameters is not easy
with a small number of samples, since each sample has varying
x, y as well as u, v. This makes it difficult to determine whether
differences in sample values are caused by changes in the random
parameters u, v or by changes in the image position x, y. For this
reason, we propose to treat the inputs and outputs of the scene func-
tion f () as random variables and to estimate the functional relation-
ships by looking for statistical dependencies between them, using
the concept of mutual information from the field of information
theory.

In the example of Figure 2, our approach estimates the statistical
dependency of the sample color on its random position on the lens
(u, v), as shown in Figure 2(b). For the in-focus quad, since color
is not a function of (u, v) we consider it to be scene detail that
should be preserved by making the color important during bilateral
filtering. When out of focus, the color is a function of (u, v) and so it
is “corrupted” by noise. Therefore, the color in these regions is given
low importance when bilaterally filtering the samples. Although the
color here varies as much as in the in-focus regions, we still blend
samples to produce smooth results, as shown in Figure 2(c).

This same principle works for other Monte Carlo effects. For a
scene with motion blur, for example, the parts of the image with
motion-blur noise are the ones where the sample features are a
function of the random time parameter t . Those that do not depend
on t are static and hence do not need to be filtered. We demonstrate
the extension of this simple idea to area light sources, path-tracing,
Russian roulette, and other MC effects in this article.

To summarize our contribution, we observe that traditional filters
do not work for MC denoising because scene features vary between
samples for two very different reasons: (1) scene content varying
as a function of screen position (which we want to preserve) and
(2) random parameters of the Monte Carlo process causing noise
artifacts (which we want to filter away). We present an algorithm
that distinguishes between the two using a small number of sam-
ples, thereby allowing us to filter only the noise from the random
parameters. We call this algorithm Random Parameter Filtering
(RPF).

2. PREVIOUS WORK

The rendering community has been interested in Monte Carlo ap-
proaches since the seminal work by Cook et al. [1984] extended the
Whitted ray tracer [1980] to produce effects such as depth of field,
soft shadows, etc. Since then, there has been significant effort to ad-
dress the noise problem. We cannot thoroughly review all previous
work here, so we refer interested readers to texts on advanced ren-
dering (e.g., Dutré et al. [2006] and Pharr and Humphreys [2010]).

Algorithms to Filter MC Noise. Shortly after the introduction
of stochastic rendering methods, Lee and Redner [1990] proposed

affect both the computation of the final pixel value and bilateral filtering.
Although the presence of noise requires f () to vary with respect to the
random parameters, the source of the noise is still the random parameters
themselves. After all, using uniform parameters for integration replaces
the noise with banding artifacts, which have different sample variance. We
discuss this in more detail in the technical report Sen and Darabi [2011b].
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using nonlinear filters such as alpha-trimmed filters (which discard
statistical outliers and average the remaining samples) for this pur-
pose. Rushmeier and Ward [1994] presented a nonlinear filter that
spreads out the contribution of “noisy” samples to smooth out the
signal. They identify the noisy samples by finding pixels where
the variance is still above a threshold after a certain amount of
time. Jensen and Christensen [1995] described a method of filter-
ing Monte Carlo renderings by filtering the low-frequency indirect
illumination separately from the rest of the image.

McCool [1999] developed a filter based on anisotropic diffu-
sion [Perona and Malik 1990] that preserves details in the image
using a map of image coherence with color, depth, and normal in-
formation. Xu and Pattanaik [2005] proposed a modified bilateral
filter to compare the range values of a Gaussian-filtered version
of the image. Others have proposed filtering global illumination
using a geometry-based discontinuity buffer [Keller 1998] to ad-
just a filter [Segovia et al. 2006; Laine et al. 2007]. More recently,
Dammertz et al. [2010] proposed the edge-avoiding À-Trous filter
that incorporates a wavelet formulation into the bilateral filter. They,
too, add additional information such as normal and world position
to help identify edges in the scene.

Overall, the problem with these approaches is that scene infor-
mation such as normals and world positions can be corrupted by
MC noise in effects such as depth of field and motion blur, so fil-
ters that rely on variations in these values to preserve scene detail
cannot denoise these kinds of scenes. This is why these approaches
have all focused on denoising irradiance or other forms of global
illumination, where the geometry scene information at each sample
is unaffected by the random parameters. Our approach, on the other
hand, can handle general MC effects with the same framework.

Algorithms to Reduce the Source of MC Noise. Researchers have
also studied the source of the noise in MC rendering in order to de-
velop algorithms to mitigate the problem. Early on, Mitchell [1991]
examined how to extend nonuniform sampling patterns from 2D
to the number of dimensions of the random parameters in order
to improve the quality of the final image. Other researchers in-
troduced new Monte Carlo-based rendering algorithms with lower
variance, such as irradiance caching [Ward et al. 1988], photon-
mapping [Jensen 2001], and multidimensional lightcuts [Walter
et al. 2006]. Others reduced the noise by fitting a smooth basis
to the noisy data (e.g., Meyer and Anderson [2006]).

Researchers have also studied the multidimensional sampling
and reconstruction problem. Hachisuka et al. [2008] proposed the
MultiDimensional Adaptive Sampling (MDAS) algorithm, which
adaptively samples the space in all parameter dimensions. MDAS
can handle a wide range of MC effects but suffers the curse of di-
mensionality as the number of parameters grows. Overbeck et al.
proposed another general method known as Adaptive Wavelet Ren-
dering (AWR) [2009], which positions samples based on the vari-
ance of a wavelet basis’s scale coefficients and reconstructs the
final image using a wavelet approximation. This smooths noisy ar-
eas and preserves detail, although it produces wavelet artifacts when
the sampling rate is low. This work also claims to distinguish be-
tween the two sources of image-space variance (scene features and
MC noise) using the wavelet coefficients. However, their proposed
method would not work for the example of Figure 2, since in image
space the MC noise here is similar to the noisy texture detail.

There is also work that uses transform domain analysis to opti-
mize the adaptive placement of samples for specific MC effects. For
example, Soler et al. [2009] used the Fourier domain to efficiently
render depth-of-field effects, while Egan et al. [2009] leveraged
frequency-space analysis to develop a sheared filter and sampling
method for motion blur. Unlike these methods, our algorithm is

Table I. Notation Used in this Article

n number of random parameters used to render the scene
m number of scene features available in the feature vector
s number of samples per pixel
xi sample vector containing the features of the ith sample
pi the floating-point (x, y) position of the ith sample on the screen
ri n × 1 vector of random parameters used to compute the ith

sample
fi m × 1 vector of scene features associated with the ith sample
ci original color vector of the ith sample
v̄ vector with mean removed and normalized by standard devia-

tion
Dv

q dependency of q on v
W r

f,k fractional contribution of all random parameters on the kth scene
feature

W
f,k
c fractional contribution of the kth scene feature on all color

channels
wij weight that sample j contributes to sample i (wij �= wji ).
c′
i final filtered color vector of the ith sample
P a pixel in the image representing a set of s samples
N set that defines the neighborhood of samples used for filtering

the samples

general and can be applied to various effects. Recently, Sen and
Darabi [2010, 2011a] used compressed sensing to reconstruct scene
signal f () assuming that it is sparse in a transform domain. This
last method is not an adaptive-sampling algorithm, but a postpro-
cess reconstruction like our own. Unfortunately, it still needs a
considerable number of samples to produce good results.

Finally, our approach uses information theory to measure the
statistical dependencies between the inputs and outputs of the Monte
Carlo rendering system. Information theory has been applied to
improve ray tracing in the past using adaptive methods (e.g., Sbert
et al. [2007]), where the entropy of the color or geometry is used to
determine the rendering quality of a part of the image.

3. THE RANDOM PARAMETER FILTERING
ALGORITHM

We now present the theoretical framework for our algorithm, which
is at its core a cross-bilateral filter that reduces the importance of
sample scene features based on their dependence on the random
parameters. Table I summarizes the notation used in this article.
In the depth-of-field example in Section 1, we had only two ran-
dom parameters (the position on the lens) but in this discussion we
generalize the problem to a Monte Carlo integration with n random
parameters, given for each sample as a vector r = {r1, r2, . . . , rn}. In
this way, the ray tracer in a typical MC rendering system calculates

ci ⇐ f (pi,1, pi,2︸ ︷︷ ︸
screen

position

; ri,1, ri,2, . . . , ri,n︸ ︷︷ ︸
random

parameters

),

where f is scene dependent and takes as its only inputs the screen
position of the sample pi and the random parameters ri , and outputs
the sample color2. In our approach, our bilateral filter uses the
sample color value as well as other scene-dependent features for
each sample (e.g., the world position, normals, and texture values
of the ray intersection with the scene) to preserve scene detail.
Therefore, instead of outputting color, our rendering system outputs

2Technically, the ray tracer outputs the radiance for the given sample, but
we use the term “color” throughout the article to simplify our explanation.
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Reference MC (512 spp)Our approach (RPF)Dependency of color onInput Monte Carlo (8 spp)
random parameters (Dr

c)
Fractional dependency on
random parameters (W

Dependency of color on
screen position (Dp

c ) r
c )

Fig. 3. In this scene, the front quad is focused so its sample values are not dependent on the random parameters u, v but are a function of screen position.
The out-of-focus quads are just the opposite. The fractional contribution of the random parameters on the color W r

c is used to calculate αk , which applies a
standard bilateral filter to preserve detail for the quad in focus and approximates a Gaussian filter for the out-of-focus quads where the color is not important.

sample vectors xi that contain all relevant information for each
sample.

xi ⇐ f (pi,1, pi,2; ri,1, ri,2, . . . , ri,n), where (1)

xi = {pi,1, pi,2︸ ︷︷ ︸
screen

position

; ri,1, . . . , ri,n︸ ︷︷ ︸
random

parameters

; fi,1, . . . , fi,m︸ ︷︷ ︸
scene

features

; ci,1, ci,2, ci,3︸ ︷︷ ︸
sample
color

}

Our approach filters the color of samples xi using a weighted bi-
lateral filter in which the importance of the color and scene features
is adjusted to reflect their dependence on the random parameters.
We use

wij = exp

[
− 1

2σ 2
p

∑
1≤k≤2

(p̄i,k − p̄j,k)2

]

× exp

[
− 1

2σ 2
c

∑
1≤k≤3

αk(c̄i,k − c̄j,k)2

]

× exp

[
− 1

2σ 2
f

∑
1≤k≤m

βk(f̄i,k − f̄j,k)2

]
, (2)

where wij is the contribution (or weight) of the j th sample to the
i th sample during filtering. The bars above p̄, c̄, and f̄ indicate they
have been normalized as described in Section 4.3.2. The first term
reduces the weight based on the distance between samples in image
space by subtracting their screen positions, while the second does
the same with their color values as in a standard bilateral filter. The
third term compares the differences of a specific scene feature, so
that texture values, surface normals, etc., can be used to separate
samples when they are not themselves functions of the random pa-
rameters. The αk and βk terms specify the importance of the kth color
channel/feature based on its dependency on the random parameters.
Note that Eq. (2) is essentially a weighted cross-bilateral [Eisemann
and Durand 2004] or joint bilateral [Petschnigg et al. 2004] filter
that uses additional scene feature information to preserve scene de-
tail. As mentioned in Section 2, similar filters have been proposed
before for Monte Carlo rendering (e.g., Dammertz et al. [2010]).
The subtle, but fundamental, difference is our introduction of the αk

and βk terms that reduce the importance of features that are func-
tions of the random parameters during the filtering process. We now
discuss how we compute these two terms.

As evidenced by Eq. (1), the sample features fi for a scene are
only functions of the random parameters ri and the screen position

pi , both selected by the renderer. High variation in these scene
features represents valid scene detail, which we want to preserve,
when they are only functions of screen position. However, when
they are only functions of the random parameters, the variation
is due to MC noise because the random number generator that
produces these parameters acts as a noise source in Eq. (1). In these
cases, the variation should be ignored by our cross-bilateral filter.
We represent the functional dependency of the kth scene feature
on all random parameters as Dr

f,k , and on screen position as D
p
f,k .

Our bilateral filter should ignore features whose variation has been
affected by MC noise, so we do this by computing the fractional
contribution of the random parameters to this particular feature.

W r
f,k = Dr

f,k

Dr
f,k + D

p
f,k

(3)

This expression tells us how much the kth feature was affected by
the random parameters as a fraction of the contributions from both
sets of inputs, with the reasonable assumption that the position and
random parameters are statistically independent. When the sample
feature is a function only of the random parameters, this value will
be close to 1, and when it is dependent only on the screen position
it will be 0. In the common case where we have some contribution
from both inputs (e.g., a partially out-of-focus object is dependent on
both screen position and u, v), Eq. (3) simply interpolates between
the two. Once we know the impact the random parameters had on a
scene feature, we can use this to compute our βk term

βk = 1 − W r
f,k, (4)

which gives scene features that are dependent on the random pa-
rameters less importance in the cross-bilateral filter. We should also
exclude scene features that do not contribute to the final color (e.g.,
a shader might not use the surface normal, so differences in the nor-
mal should be ignored), so we multiply Eq. (4) with a W f,k

c term that
tells us how much the sample color depends on a specific feature.

βk = W f,k
c

(
1 − W r

f,k

)
(5)

We describe how to compute W f,k
c in Section 4.4.1. Similar terms

can be calculated for αk using the dependencies of sample color.

W r
c,k = Dr

c,k

Dr
c,k + D

p
c,k

(6)

αk = 1 − W r
c,k (7)

Figure 3 shows a didactic example that visualizes some of the terms
in our formulation. In our implementation, we use 3-channel RGB
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(a) Screen position (b) Random parameters (c) World space coords. (d) Surface normals (e) Texture value (f) Sample color

Fig. 4. We visualize the elements of the sample vectors for the CHESS scene (with only DoF) by averaging them for each pixel and displaying them as colors.
(a) The screen position (pi ) of the sample. (b) The two random parameters used to evaluate the u, v position on the lens for depth of field, represented by
{ri,1, ri,2}. Because these random parameters are selected uniformly in the range from [0,1], their average in each pixel is close to a constant color (0.5, 0.5,
0) with some noise. (c) The world coordinates for each sample. The x-axis is tilted toward the right, the y-axis is up, and the z-axis points out of the page and
off to the left. (d) The surface normals for each sample. We show absolute value here to help emphasize the bump map texture on the black queen. (e) The
texture value for each sample. (f) The sample color average, which is the result from traditional Monte Carlo if we simply box filter the samples together. Our
algorithm computes the statistical dependency of scene features in (c–f) on the random parameters in (b). Visually, we see that the regions with Monte Carlo
noise are those where the scene features have similar structure to the random parameters, that is, they are predominantly a function of these random parameters.

color and compute the weights for each channel separately. Note
that although the samples’ image positions can be chosen randomly
as well (e.g., in jittered sampling), we treat them differently from
the random parameters because we want to preserve features that
are functions of the image position. A similar observation was made
by Mitchell [1991], who noted that parameter dimensions such as
t , u, and v play a different role than image coordinates x and y.
Since our filtering process effectively integrates across the random
parameter dimensions but does not filter detail that varies in x and y,
we must integrate over x and y ourselves after filtering the samples
to compute the final pixel color. We now describe one of the key
steps of our approach: how to estimate the functional relationships.

3.1 Estimating Functional Relationships between
Monte Carlo Inputs and Outputs

Since it is difficult to derive an exact functional relationship between
scene features and the inputs of the rendering system pi and ri for
complex scenes, we propose instead to see if there is a statistical
dependency (i.e., does knowing the inputs tell us something about
the scene features). This is the basic meaning of mutual information,
a concept from the field of information theory [Cover and Thomas
2006], which is the exact measure of dependence between two
random variables and indicates how much information one tells
us about another. The mutual information between two random
variables X and Y can be calculated as

μ(X; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (8)

where these probabilities are computed over the neighborhood of
samples N around a given pixel. We describe the implementation
details (including how we compute Eq. (8)) in the next section.

4. ALGORITHM IMPLEMENTATION

In this section, we outline the key implementation details of our
algorithm, following the simplified pseudocode in Algorithm 1.
We refer those interested in implementing RPF to the technical
report [Sen and Darabi 2011b] for more information and complete
pseudocode.

ALGORITHM 1. Random Parameter Filtering (RPF) Algorithm
Input: scene to render and s the number of samples/pixel
Output: final image

1: Render scene with s samples/pixel, output vector x for every
sample (Sec. 4.1)

2: for iteration step t = 0, 1, 2, 3 (Sec. 4.2) do
3: for all pixels P in image I do
4: Preprocess samples in neighborhood N of P based on

filter size (Sec. 4.3)
5: Estimate statistical dependency of sample color/features

on inputs pi and ri for samples in N , use them to compute
weights αk and βk (Sec. 4.4)

6: Filter samples’ color in P using weighted bilateral filter
of Eq. (2) (Sec. 4.5)

7: end for
8: end for

9: After all samples are filtered, box filter each pixel to compute
final pixel color

10: return final image

4.1 Rendering Samples and Creating
Feature Vectors

Because our denoising algorithm is a postprocess filter, we first
render the samples at a fixed sampling density and store vector x
for each sample. For the scene features in f, our algorithm stores for
each sample the normal, world-space position, and texture values
(the set of floats from texture lookups used by the surface shader to
produce the surface color) for the first intersection point of the ray,
and the world position and normal for the second intersection in a
path tracer. The same features are stored for every scene, even if an
object does not have the specific feature (a zero is substituted) or if
the shader does not use the feature when computing the final color
(features that do not affect the final color are ignored, as described
earlier). Since all these features are available to the rendering system
at some point during the tracing of the ray, outputting the feature
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(a) Reference (b) MC Input (c) RPF (d) no clustering (e) no DoF params

Fig. 5. This MONKEY HEADS scene shows the importance of clustering
samples. (a) Reference MC at 8,192 samples/pixel. (b) Input Monte Carlo at
8 samples/pixel. (c) Random Parameter Filtering (RPF) with the complete
clustering from Section 4.3.1. (d) RPF without clustering. The region where
the two heads overlap is not properly denoised because sample statistics are
getting mixed. (e) If the random parameters for lens position are removed
from the sample vector, the algorithm can no longer denoise DoF.

vector for the sample is simply a matter of caching the information
after it is calculated. This is standard practice in rendering systems
when creating a G-buffer [Saito and Takahashi 1990] for deferred
shading [Deering et al. 1988]. Figure 4 shows a visualization of the
feature vector for the CHESS scene.

4.2 Applying Multiple Filter Iterations

To estimate the functional dependencies of sample values on the
inputs to the MC rendering system using mutual information, we
must select a set of samples to process. We cannot use every sample
in the image because the functional dependencies change from re-
gion to region (e.g., an image may have some regions in focus and
others out of focus, and these have different dependencies on the
random parameters). Therefore, as we loop over every pixel in the
image, we select a local neighborhood of samples N around that
pixel to measure the local statistics for mutual information. How-
ever, we need to decide how big to make the block size that defines
the extent of neighborhood N .

If we use a large block size, there will be more samples to calcu-
late statistics (improving the accuracy of our dependency estimates)
and provide us with more samples to filter out noise. Unfortunately,
larger block sizes have less locality and might cause problems when
the block overlaps regions with different functional dependencies,
such as regions where the amount of defocus blur changes. To re-
solve these two competing considerations, we found it best to use
a multipass approach, where our algorithm loops over the image
several times using different block sizes. We start at a larger block
size and then shrink it down in a series of iterations. We found four
iterations to be sufficient, starting with a block width of 55 pixels
and then going down to 35, 17, and finally 7. At each step, we
filter the samples’ colors with the weighted bilateral filter of Eq. (2)
using the samples in N , and then use that new filtered color in
the next pass of the algorithm (except to compute statistical depen-
dencies, since they are always computed with the original sample
color).

By going from larger to smaller, we first address the low-
frequency noise that a smaller filter kernel would leave behind
and then, as we reduce the block size, we eliminate the local-
ized noise and clean up the detail. The multipass approach also
reduces the maximum block size needed for filtering, since we can
emulate a larger filter by progressively applying a smaller kernel.

(a) W r,1
c,k and W r,2

c,k (b) W r
c,k (c) Our output (RPF)

0

1

Fig. 6. We visualize the dependency of color on the random point on the
lens for the scene in Figure 4. (a) Fractional contribution of the random u and
v parameters (W r,1

c,k and W
r,2
c,k ) shown in the red and green color channels,

respectively. Blurry horizontal edges have more dependency on u, while
blurry vertical edges have more dependency on v. (b) A visualization of
W r

c,k from Eq. (6). Areas that are more out of focus have higher values,
which indicate larger blur filters. (c) Final output of our algorithm.

This allows us to get good performance and quality at the same
time.

4.3 Preprocessing the Samples

Before we use the samples in neighborhoodN to compute statistical
dependencies, we must perform some preprocessing steps.

4.3.1 Clustering Samples to Avoid Mixing Statistics. As men-
tioned earlier, a square block of pixels could overlap different re-
gions of the scene, some that depend on the random parameters and
some that do not. In these cases, if we simply compute the statistics
using every sample in the block, the statistical dependency on the
random parameters would be washed out, causing artifacts as shown
in Figure 5. For this reason, we only use samples with statistical
properties similar to the pixel being filtered.

To do this, we compute the average feature vector mf
P and the

standard deviation vector σ f
P for each component of the feature vec-

tor for the set of samples P at the current pixel. We then create our
neighborhood N using only samples whose features are all within
3 standard deviations of the mean for the pixel. This helps us reduce
the problem with mixing statistics. The underlying assumption here
is that the statistics of the current pixel are a fair representation of
that part of the image, which means that we need enough samples at
every pixel to do the initial statistics. We have found experimentally
that our algorithm works with 4 samples/pixel and becomes more
robust as more samples are added.

4.3.2 Normalizing Scene Features. Before we compute the sta-
tistical dependencies for a set of samples in a neighborhood, we must
first remove the mean and divide by the standard deviation for each
of the elements in the sample vector. The reason for this is that
the features in f reside in very different coordinate systems (world
positions could be in the range of 0 to 1000, while the normal vector
could have components in the range of 0 to 1, for example). If we do
not correct for this discrepancy, we would inadvertently give larger
weight to certain features when calculating dependency that may not
necessarily be more important. This procedure is quite common in
the machine learning community as well, since they are confronted
with a similar problem [Hastie et al. 2001]. This is also related to
Mahalanobis distance [Mahalanobis 1936], but in this case it is as
if we assume that the covariance between scene features is zero,
resulting in a diagonal covariance matrix. We represent vectors that
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q = 0.0001 q = 0.001 q = 0.01 q = 0.1

q = 1 q = 10 q = 100 q = 1000

Fig. 7. To judge the impact of our color/feature weights αk and βk in our
bilateral filter, we pre-multiply them here by a variable q that we vary from
0.0001 to 1000. When q = 0.0001, the color and feature differences are
essentially ignored in the bilateral filter and it becomes a simple Gaussian
blur. When q = 1000, differences between colors and features are weighted
heavily (regardless of whether they depend on the random parameters), so
the samples are left unfiltered, resulting in an image with MC noise.

have been normalized in this manner with a bar (e.g., f becomes f̄)
in the equations in Section 3.

4.4 Computing Dependencies and Filter Weights

4.4.1 Estimating Statistical Dependencies on Inputs. First, we
describe how we calculate the dependency of the kth scene feature
on all random parameters (Dr

f,k) using mutual information. Ideally,
we would like to compute Dr

f,k using the joint mutual information
μ(rN ,1, rN ,2, . . . , rN ,n; fN ,k), which tells us how much information
all n random parameters give us about fk (the N notation indicates
that the mutual information is measured over the set of samples
in the neighborhood). Unfortunately, joint mutual information can
be difficult and expensive to compute as the number n gets larger,
so our heuristic approximates this instead by measuring the de-
pendency on individual random parameters and adding them up.
Although this underestimates the total statistical dependency (see
Section 5.3 of the technical report), in practice it gives us reasonable
results quickly. Therefore, we first calculate the statistical depen-
dency between kth scene feature and the lth random parameter by
D

r,l
f,k = μ(f̄N ,k; r̄N ,l), and then approximate the dependency of the

kth scene feature on all n random parameters as

Dr
f,k =

∑
1≤l≤n

D
r,l
f,k =

∑
1≤l≤n

μ(f̄N ,k; r̄N ,l). (9)

The dependency of the kth scene feature on screen position (Dp
f,k)

and color dependencies Dr
c,k and D

p
c,k are similarly computed.

D
p
f,k =

∑
1≤l≤2

D
p,l

f,k =
∑

1≤l≤2

μ(f̄N ,k; p̄N ,l) (10)

Dr
c,k =

∑
1≤l≤n

D
r,l
c,k =

∑
1≤l≤n

μ(c̄N ,k; r̄N ,l)

D
p
c,k =

∑
1≤l≤2

D
p,l

c,k =
∑

1≤l≤2

μ(c̄N ,k; p̄N ,l) (11)

(a) MC Input (8 spp) (b) Our approach (RPF) (c) αk = 0, βk = 0

(d) αk = 1, βk = 0 (e) αk = 0, βk = 1 (f) αk = 1, βk = 1

Fig. 8. We study the effect of αk and βk by setting them to fixed values in
this scene with DoF and area lighting. (a) MC input, and (b) the result of
our approach (αk ← Eq. (7), βk ← Eq. (5)). (c) When we set αk = βk = 0,
the filter in Eq. (2) acts as a standard Gaussian filter and blurs the image
(the clustering algorithm of Section 4.3.1 has been disabled here and in
Figure 7). (d) In this case, the filter preserves color differences so MC noise
is preserved. (e) This performs cross-bilateral filtering using scene features,
similar to previous work. The noise in the focused regions is removed
because the scene features here are similar enough to blend the colors
together (we correctly preserve the checkerboard pattern, though). The out-
of-focus regions remain noisy because their features vary significantly from
sample to sample. The hard shadow from the black queen is also overblurred
because the filter ignores color differences, even though color here is not a
function of the random point on the area light source. (f) When αk = βk = 1,
the filter preserves color/feature differences so all MC noise remains.

4.4.2 Calculating Filter Weights αk and βk . The dependencies
for the kth color channel D

p
c,k and Dr

c,k will be used to calculate
the fractional contribution of the random parameters to this color
channel W r

c,k as shown in Eq. (6), which will then be used in the
calculation of the importance of the kth color channel, αk , in Eq. (7).
Figure 6 shows a visualization of the components of W r

c,k .
Likewise, the dependencies of the kth scene feature D

p
f,k and Dr

f,k
will be used to compute the W r

f,k term with Eq. (3) that is then used
to calculate βk . The W f,k

c term in Eq. (5) is computed as

W f,k
c = Df,k

c

Dr
c + D

p
c + Df

c

, (12)

where Df
c is the dependency of all colors on all features and Df,k

c
the dependency only on the kth scene feature. The Dr

c , D
p
c , and Df

c
terms are calculated by summing over the color channels.

Dr
c =

∑
1≤k≤3

Dr
c,k, Dp

c =
∑

1≤k≤3

D
p
c,k, Df

c =
∑

1≤k≤3

Df
c,k (13)

Figures 7 and 8 give the reader some intuition about the αk and βk

weighting terms by changing their values. Finally, we note that in
our final algorithm we scale the size of αk and βk slightly in each
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AWRMDASInput Monte Carlo (8 spp)Reference (8,192 spp) ` Our approach (RPF)A-Trous

Fig. 9. Here we compare various approaches on the CHESS scene (a 6D integration problem with depth of field and an area light source) rendered with
8 samples/pixel. The MDAS algorithm exhibits blockiness at this low sampling rate because of its nearest neighbor reconstruction, while AWR has wavelet
artifacts. The À-Trous method is unable to handle the depth-of-field effect because the scene features (normals, world position) change significantly in the
noisy out-of-focus region, so it does not filter across these pixels. Our algorithm, on the other hand, determines the statistical dependency between these scene
features and the random parameters so it can produce noise-free images that are comparable to the reference image. Although the reference and our result are
different, the reference image still has visible noise even at 8,192 samples/pixel while our result is completely smooth.

iteration of the multipass algorithm for improved results. Details
are in Section 5.5 of the technical report.

4.4.3 Calculating Mutual Information. To calculate the mutual
information between two vectors x and y (or in our case, e.g., f̄N ,k

and r̄N ,l), we first calculate the histogram of each of them (for
computing p(x) and p(y)) as well as their joint histogram (for
p(x, y)) and plug their probabilities into Eq. (8) to get μ(x; y).
To compute the histograms, we first make all the values positive
by subtracting the minimum element in the vector and quantize
the elements into integer bins by rounding their values. We count
how many times the values of x fall inside each bin and find the
probabilities by dividing by the length of x. The joint histogram
is calculated in a similar way, except with pairs of values (x, y).
To implement this, we examined the mutual information code from
the Matlab Central Web site [Peng 2007] and rewrote our own
version in C. This sufficed for our algorithm, although it would be
interesting to explore other ways of calculating mutual information
in the future.

4.5 Filtering the Samples

After calculating the color/feature weights αk and βk , we filter the
samples’ color. For every sample i in the pixel P , we loop over all
the samples j in neighborhood N and compute filter weights wij

using the weighted bilateral filter of Eq. (2) and use these weights
to blend in the color contributions from these samples

c′
i,k =

∑
j∈N wij cj,k∑

j∈N wij

, (14)

where the denominator is never zero because at least wii = 1
(a sample fully contributes to itself). Note that this process fil-
ters the colors of individual samples (not pixels), and we perform
this separately for every pixel in the image, since statistics change

from pixel to pixel. After all samples in the image have been
filtered, we repeat the process with a new iteration as shown in
Algorithm 1.

4.5.1 Setting the Variance of the Filter. To compute Eq. (2),
we need variances σ 2

p , σ 2
c , σ 2

f . The screen position variance σ 2
p is

set by the filter box size, such that the standard deviation σp is one
quarter the width of the box. Note that for speedup we compute this
by randomly selecting samples with a Gaussian distribution with σ 2

p
variance around the pixel of interest (see Section 4.1 of the technical
report). The variances of the Gaussians for both the color and the
feature are set to the same value σ 2

c = σ 2
f = σ 2

(1−W r
c )2 .

We divide these variances by (1 − W r
c )2 because, in the end, we

only care about the sample color and want a large filter wherever the
color depends a lot on the random parameters (i.e., is very noisy).
This term adjusts the size of the Gaussian based on the overall
noise level, making it large when needed. We could have rolled
the σ 2

c and σ 2
f terms into the αk and βk coefficients in Eq. (2), but

because the σ 2
c and σ 2

f terms depend on all three color channels
(because of the W r

c term) as opposed to αk (whose W r
c,k term varies

per color channel), it was easier to separate them. This way, the
σ 2

c and σ 2
f terms modulate the overall size of the Gaussian while

αk and βk adjust it further based on dependencies with the random
parameters. The σ 2 parameter was selected by experimenting with
scenes at 8 samples/pixel, but is scaled inversely by the number of
samples per pixel s (so as s grows, σ 2 gets smaller): σ 2 = 8σ 2

8 /s. For
noisy scenes (e.g., indoor path-tracing such as Figures 11 and 13)
we used σ 2

8 = 0.02, while for all others we set σ 2
8 = 0.002.

In the end, our approach is a biased but consistent estimator
because it converges to the value of the integral as the number of
samples per pixel s goes to infinity. As s → ∞, σ 2

c = σ 2
f → 0,

which produces a weight wij = 1 only when i = j and zero
elsewhere. Therefore, the colors of the samples are not filtered at
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Our approach (RPF)AWRMDASInput MC (8 spp)Reference (8,192 spp)

Fig. 10. This figure compares various approaches on the TOASTERS scene
(a 6D integration problem with DoF and area light source) at 8 spp.

all, so our approach converges to standard Monte Carlo, which is a
consistent estimator. For a small number of samples, however, our
filter introduces bias because the expected value of the estimator is
no longer equal to the integral. We discuss this in more detail in
Section 6.1.

4.5.2 Handling Sample Spikes in High Dynamic Range. The
samples computed by MC rendering systems are usually in a high
dynamic range representation in order to properly calculate illu-
mination effects. Sometimes a sample can be several orders of
magnitude larger than its neighbors, for example, in a path-traced
indoor scene where a sample might hit a light source directly in an
early bounce. Even if their color depends on the random param-
eters, these sample spikes do not get blended properly with their
neighbors because their color is so different that the bilateral filter
does not mix them, causing speckling artifacts in the final image.
An example of this is shown in Figure 5 of the technical report [Sen
and Darabi 2011b].

To address this, we simply examine the color of the samples
after our filtering step to look for samples that are still significant
outliers, that is, greater than a standard deviation from the average
pixel color. These samples have not been filtered by our process,
so we simply set their color to be equal to the pixel average. In
this way, the contribution of the spike is taken into account when
we take the pixel average, but it does not overwhelm the other
samples when integrating them into a final pixel color. We admit
this is a simplistic way to address this issue. Others have tried more
principled approaches (e.g., DeCoro et al. [2010]) and it would be
interesting to combine such an approach with RPF in the future.

5. RESULTS

We implemented the Random Parameter Filtering (RPF) algorithm
in C++ and integrated it into the PBRT2 [Pharr and Humphreys
2010] and LuxRender [LuxRender 2011] rendering systems for
our experiments. All results shown here were computed on an In-
tel dual quad-core Xeon X5570 3.06 GHz machine with 16GB
of memory. To test our algorithm against state-of-the-art sam-
pling/reconstruction techniques, we compare with the Multidi-
mensional Adaptive Sampling (MDAS) algorithm of Hachisuka
et al. [2008], the Adaptive Wavelet Rendering (AWR) work of Over-
beck et al. [2009], the sheared-filter motion-blur approach of Egan
et al. [2009] (we call it SFMB, for short), and Sen and Darabi’s
Compressive Integration (CI) framework [2010]. For all of these
approaches, we use the implementations provided by the respective
authors. We also compare our approach to two MC noise-filtering
approaches: Xu and Pattanaik’s denoising algorithm [2005] and
Dammertz et al.’s À-Trous edge-avoiding filter [2010].

(a) Input Monte Carlo (8 spp) (b) Equal time MC (32 spp)

(c) Monte Carlo denoising (d) À-Trous

(e) Our approach (RPF) (f) Reference Monte Carlo (8,192 spp)

Fig. 11. We compare RPF with previous methods for filtering MC noise
using the path-traced PERSIAN ROOM scene. (a) Input at 8 samples/pixel.
(b) With equal time as RPF, standard MC gets only 32 samples/pixel and
is still noisy. (c) The MC denoising algorithm of Xu and Pattanaik [2005]
and (d) the À-Trous filter of Dammertz et al. [2010] cannot overcome the
magnitude of the noise without significant overblurring. (e) Our algorithm
properly eliminates the noise in this scene but preserves detail. (f) Reference
at 8,192 samples/pixel, for comparison. An equal-quality comparison was
difficult for this scene, because even the reference image still has noise.

To test our algorithm, we ran it on a variety of complex scenes
with various Monte Carlo effects such as depth of field, area light
sources, motion blur, path-tracing, and Russian roulette. When de-
scribing the dimensionality of a scene, we include the pixel integra-
tion for antialiasing to match the nomenclature used in the literature
(e.g., Hachisuka et al. [2008] and Overbeck et al. [2009]). We only
count path-tracing as a 2D integration because we only use the first
reflection direction in our list of random parameters. We also exper-
imented on a large set of simple test cases to ensure correctness of
our algorithm, a subset of which appears in the associated technical
report [Sen and Darabi 2011b]. The scenes were also rendered at a
variety of sizes, from 512 × 512 for the TOASTERS (Figure 10) and
CAR (Figure 12) scene to full HD resolution (1920 × 1080) for the
TOY GYRO (Figure 13) and SAN MIGUEL scenes (Figures 1 and 19).

Quality Comparisons. We first examine the quality of images pro-
duced with our approach. Figure 1 is a frame from the SAN MIGUEL

video sequence which requires 4D integration with path-tracing and
was reconstructed from the 8 sample/pixel noisy input data shown
in the left inset. Our algorithm can handle refraction, reflection,
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Reference MC input MDAS CI SFMB RPF

Fig. 12. This motion-blurred CAR scene was rendered at 4 spp with various
algorithms (top image is from RPF). The first row of insets shows a region
where Compressive Integration (CI), Sheared-Filter Motion Blur (SFMB),
and RPF all work well. In the second row, SFMB reconstructs detail in the
back wall that our algorithm overblurs, but it also leaves noise on the roof
of the car that RPF removes. The third inset is left noisy by SFMB but is
denoised by ours. Finally, the fourth row shows a static region of the scene
that should be sharp but is overblurred by the CI approach. The full images
are available in the technical report [Sen and Darabi 2011b].

and other effects while preserving shadows and other details in the
scene. We also include a seamless inset with an 8,192-sample/pixel
reference image to show that the differences between the two are
subtle, even though the reference took more than 24 hours to com-
pute and our result just a few minutes.

Figure 9 compares MDAS, AWR, and À-Trous with our ap-
proach for the CHESS scene, which requires 6D integration (DoF,
area light source). The reference image still has some noise even
at 8,192 samples/pixel, while ours produces a smooth result with
only 8. Figure 10 shows another comparison of MDAS, AWR, and
our approach for the TOASTERS scene, a 6D integration problem
(DoF, area light source). Figure 11 shows the PERSIAN ROOM, a
complex, path-traced scene that produces noisy results, even with
8,192 samples/pixel. Here, we compare our method against the two
filtering methods (À-Trous and Monte Carlo denoising), both of
which eliminate important scene features in the process of reduc-
ing the MC noise. RPF gives better results since our cross-bilateral
filter is able to preserve scene detail. In addition, we size our filter
kernel based on the dependence of the color on the random parame-

RPF with Russian rouletteRPF w/o Russian rouletteInput Monte Carlo (8 spp)

Fig. 13. Result of RPF on the TOY GYRO scene with 8D integration: DoF,
motion blur, path-tracing, and Russian roulette for the cockpit window. The
top image shows the MC input at 8 spp, the middle is produced by our
algorithm. The bottom insets show that there is still noise after filtering if
we do not include the Russian roulette term in the list of random parameters.

ters (Section 4.5.1), thereby reducing the amount of blur in parts of
the image where the random parameters do not affect the final color.

Figure 12 shows the CAR scene, a 3D integration problem with
motion blur to compare against the Sheared Filter Motion Blur
(SFMB) and the compressive integration (CI) algorithms. The com-
parison with SFMB is interesting because this algorithm is not gen-
eral but is specifically designed to handle motion blur. In some parts
of the image we are able to match the quality of SFMB (first row of
insets), while in others SFMB is better at blurring the noise in the
direction of motion (second row of insets) since it has specific mo-
tion/blur information that tracks points on the scene and establishes
a well-defined motion field. However, SFMB also has artifacts and
it does not denoise the shadows below the car (third row of insets),
or at the boundary between the car and the back wall, which our
method handles correctly. The CI approach works reasonably for
the motion-blurred regions, but its Fourier basis tends to overblur
regions of the image that should be sharp (last row of insets).

Figure 13 shows our result for the TOY GYRO scene with 8D
integration (DoF, motion blur, path-tracing, and Russian roulette),
rendered with 8 spp. We also show how we handle the Russian
roulette parameter used to trace rays through the window of the
cockpit in the insets at the bottom. To measure the quality of our
output in a quantifiable way, we perform a Mean-Squared-Error
(MSE) comparison between our result and the ground truth as a
function of the number of samples in Figure 14 and compare against
MDAS in Figure 15. Both plots show that our algorithm converges
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Fig. 14. Convergence of RPF to the ground truth as we increase the number of samples. On the left we show a plot of MSE versus the number of samples for
standard MC and for our approach. Unlike Figure 15, MDAS was excluded because it took too long for this scene at higher sampling rates. On the right we
show the output of our algorithm in the top row, and difference images (with “heat” image insets) that compare our results to the reference in the bottom.
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Fig. 15. We compare the quality of RPF, MDAS, and AWR as a function
of the sampling rate. The MSE curve only compares against MDAS because
the AWR implementation from Overbeck et al. [2009] uses a different ren-
dering system and has shading differences that make fair MSE comparisons
impossible. Therefore, we only show quality comparisons in the form of
images to the right.

as expected to the standard Monte Carlo with a large number of
samples.

In terms of memory consumption, our algorithm has to store
additional information at each sample to maintain the sample vec-
tor and associated features. The scenes that required the largest
sample vectors turned out to be the path-tracing scenes where we
store the world position and normal information for the second
intersection point, in addition to the other standard information.
In these cases, we store up to 27 floats (108 bytes) per sample,
which is reasonable especially considering that we are able to get
a satisfactory image with a low number of samples. We note that
deferred shading rendering systems [Deering et al. 1988] have sim-
ilar memory requirements. For comparison, the MDAS algorithm
uses 400 bytes/sample [Hachisuka et al. 2008] and requires more
samples (often 32 or more) to get reasonable results.

Timing Results. Our algorithm runs in a few minutes for all scenes
tested. For example, for the CHESS scene in Figure 9 our algorithm
runs in 4.9 minutes (including the rendering time for the input
samples). For comparison, the MDAS algorithm using the authors’
available implementation takes 20.5 minutes to render the same
scene and produce the results shown. This algorithm is slowed
down because it suffers from the curse of dimensionality and in this
case we are dealing with a 6D integration problem.

Equal qualityOur approach (RPF)Equal timeReference MC

1,024 samples/pixel8 samples/pixel81 samples/pixel8,192 samples/pixel

Fig. 16. Here are equal time/quality comparisons for two insets of the
TOY GYRO scene of Figure 13. Our algorithm at 8 samples/pixel took about
12 minutes total, and in that amount of time standard MC could render
81 samples/pixel. For equal quality, we increased the sampling rate of stan-
dard MC to match the mean-squared error (MSE) of our approach, which
happened at 1,024 samples/pixel and took 2.5 hours to render.

For equal-timing comparisons, we compare against standard MC
in Figures 11, 16, and 17. Equal-time comparisons with MDAS do
not make sense, since that algorithm is both slower and produces
results of lower quality. Although our algorithm is comparable in
speed to AWR and SFMB, both of those algorithms use different
rendering systems which makes fair timing comparisons impos-
sible. To get a breakdown of computation time for the different
stages of our algorithm, we instrumented our code running on the
PERSIAN ROOM scene. Our RPF implementation took approximately
225 seconds to produce the image in Figure 11(e) at 800 × 600 res-
olution, while the reference rendering, for comparison, took more
than 17 hours and is still noisy. The complete timing breakdown is
shown in Table II. The “Preprocess” stage clusters the samples and
removes their mean and standard deviation (Section 4.3), “Compute
feature weights” calculates the statistical dependencies and the color
and feature weights αk and βk (Section 4.4), and “Filtering samples”
calculates the weights and filters the samples (Section 4.5).

Our algorithm took the longest on the SAN MIGUEL video frames,
which were rendered at full, 1920 × 1080 HD resolution and took
about 14 minutes to render and filter each frame. For comparison,
each reference frame took more than 24 hours to render and still
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Table II. Timing Breakdown for Our Algorithm for Figure 11

Task Time (secs.) Overall Percentage
Initial rendering (8 spp) 76.0 33.7%
Preprocess samples 48.3 21.4%
Compute feature weights 77.1 34.2%
Filtering samples 22.4 9.9%
Additional Overhead 1.8 0.8%
Total time for RPF algorithm 225.5 100%

had visible noise. This means that rendering the full, 300-frame
video sequence at reference quality would have taken most of a
year using a fairly powerful machine. Our algorithm produces rea-
sonable results 100× faster and is therefore a viable alternative for
previsualization in production environments.

6. DISCUSSION

6.1 Convergence properties

As discussed earlier, our algorithm is biased when the number of
samples is small. The reason for this is that a few samples could
miss scene information that our weighted bilateral filter cannot re-
construct. Therefore, the expected value of our pixel value estimates
will differ from the correct “ground truth” value at low sampling
rates, the definition of estimator bias. However, our algorithm is
consistent because as the number of samples is increased the algo-
rithm converges to the ground truth, as shown in Figures 14, 15,
and 17 where RPF produces results with lower MSE than standard
MC at all sampling rates tested. Figure 4 in the technical report
shows this trend continues for the ROBOTS scene until 2,048 spp.

The reason for this consistency is that we calculate the RPF
filter’s variance σ 2 by dividing a fixed variance parameter by the
number of samples (σ 2 = 8σ 2

8 /s), as described in Section 4.5.1.
Therefore, the filter variance goes to zero as the number of samples
s → ∞, which means that at high sampling rates our algorithm
reduces to brute-force Monte Carlo, a consistent technique. To test
this, we ran the RPF algorithm but fixed the variance σ 2 = σ 2

8
to be independent of the sampling rate, shown in the red curve in
Figure 17. As expected, fixing the variance results in an algorithm
that is not consistent, and standard MC produces results with lower
MSE at sampling rates higher than 128 samples/pixel.

6.2 Generality of our Approach

Previous approaches, such as Á-Trous [Dammertz et al. 2010] and
Blender’s bilateral blur filter [Blender 2011], use a cross-bilateral
filter on a set of scene features to try to remove the MC noise
while preserving scene detail. Our framework explains why these
approaches work when the scene features are not themselves func-
tions of the random parameters (effectively, these approaches apply
the bilateral filter of Eq. (2) with αk = 0, βk = 1). This is why these
methods have been predominantly used to denoise effects such as
area light sources and global illumination, where the scene features
(surface normal, world position, etc.) are not functions of the ran-
dom parameter (i.e., the position on the light source). However,
these algorithms cannot handle effects such as depth of field or mo-
tion blur, because the scene features in these cases are also corrupted
by the MC noise and their incorporation into the cross-bilateral filter
prevents the MC noise from being removed.

Our algorithm, on the other hand, can handle a wide range of
Monte Carlo effects easily because we estimate the dependencies
of sample values on the random parameters regardless of what the
random parameters mean physically. To handle a particular effect,
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Fig. 17. The proposed RPF algorithm (green curve) is consistent because
it reduces to standard Monte Carlo as the number of samples is increased.
If we fix the variance of the filter, however, we do not get a consistent
result. In terms of timing, it takes 15 secs. for the input samples to ren-
der, approximately 106 secs. for our algorithm and for the equal time MC
(64 samples/pixel), and almost 4 hours for the reference image.

we only need to add the appropriate random parameter(s) to the
sample vector. In this way, we are able to denoise effects like depth
of field (Figures 2, 3, 5, 7, 9, 10, 13, 14, 16, and 17), motion blur
(Figures 12, 13, and 16), glossy reflection (Figures 5, 7, 13, and 17),
area light sources (Figures 9, 10, 14, 15, and 21), and path-tracing
(Figures 1, 11, 13, 17, and 19). More interestingly, we can also
correctly handle subtle MC effects such as integrating over multiple
light sources using a discrete random number to select between them
(used in the PERSIAN ROOM scene in Figure 11), or using Russian
roulette [Arvo and Kirk 1990] to randomly either transmit or reflect
a ray. For example, the TOY GYRO scene of Figure 13 uses Russian
roulette for the glass in the cockpit, resulting in noisy speckles when
rendered with only 8 samples/pixel. With our algorithm, however,
we are able to determine the relationship between the color and
this random parameter and appropriately filter this effect without
significantly overblurring the objects behind the glass.

On a related note, because our algorithm determines what is noise
by calculating the statistical dependencies of sample values on the
random parameters, the removal of a known random parameter
from the sample vector will lead the algorithm to the incorrect
conclusion that the noise from this parameter is actually part of the
scene content and it will not be filtered. Examples of this are shown
in Figures 5 and 13. This is not an artifact of our algorithm, but
rather it highlights how it effectively removes noise from a scene.

6.3 Other Ways to Estimate Functional Relationships

We also experimented with other metrics for estimating functional
dependence (e.g., correlation and PCA) to see if they offered im-
provement. We found these measures significantly inferior to mutual
information, even for simple cases. For example, Figure 18 shows
a simple, diffuse square lit by a uniform hemispherical light source
where we shade our samples by ci = cos(θi), with random parame-
ter θi uniformly distributed from − π

2 to π

2 . The correlation between
the two is given by corr(θ, c) = E[(θ − μθ )(c − μc)]/σθσc, which
analytically gives us a value of 0 for this example. Since there is
obviously a relationship between c and θ , correlation is not a good
metric for our work.
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RPF (mutual information)RPF (correlation)Input Monte Carlo (4 spp)

Fig. 18. This figure compares different metrics of statistical dependence.
Here, a diffuse square is illuminated by a uniform hemisphere and shaded
by taking four samples at random angles and cosine weighting them, so
the color for each sample is simply ci = cos(θi ), where θi is the random
parameter. We would like our approach to be able to detect a relationship
between the color and the random parameter so that it can remove the MC
noise. Correlation, unfortunately, cannot recover this relationship correctly
as explained in the text, while mutual information works quite well.

Mutual information, on the other hand, detects a relationship and
produces the correct result in this case. Of course, it can sometimes
also fail to detect a functional relationship between the random
parameters and sample values. For example, if the scene function
varies with respect to the random parameters in an apparently ran-
dom fashion (e.g., from a very noisy, random texture), mutual infor-
mation would determine that the random variables are independent.
In practice, however, we found that mutual information worked well
for the scenes shown, where the relationship between the samples’
values and the random parameters is complex.

6.4 Extension to Animated Scenes

The rendering of animated scenes is important in high-end ren-
dering. Fortunately, it is easy to extend our algorithm to handle a
3D spatio-temporal volume. Here, each frame of the sequence is
rendered independently (as is typically done in industry), and the
sample vectors for each frame are passed to our postprocess filter. To
create a 3D block around a pixel to compute statistics and perform
filtering, we do a quick search of the nearby regions in the adjacent
images to find the best match for the given pixel using the supple-
mentary scene information. This increases the temporal correlation
across frames and improves the filtering process. Since we are now
operating on a 3D block of pixels, our block size can be smaller and
still have enough samples for computing statistics, thereby improv-
ing locality. This extension is also an advantage of our algorithm
over general adaptive-sampling techniques (e.g., MDAS and AWR),
which are difficult to extend to animated sequences.

To test this extension, we generated three animated sequences
for the CHESS, PERSIAN ROOM, and SAN MIGUEL scenes in the sup-
plementary video. Figure 19 shows a frame from the SAN MIGUEL

video sequence, which was rendered at full, 1920 × 1080 HD res-
olution. Although the path-tracing noise requires us to blur over
large regions of the image, our bilateral filter finds and preserves
much of the important scene content. The insets show that although
much of the detail is not visible in the noisy input (many pixels are
completely black), our algorithm is able to recover it reasonably.
It can do this because it determines that the colors of the samples
are highly dependent on the random parameters of the path tracer,
so the bilateral filter ignores them completely. On the other hand,
the texture value (which contains the detail in this scene) is not de-
pendent on the random parameters, so the filter blends in the color
from samples that have similar texture values to remove the noise.

Fig. 19. This is a 1920×1080 frame from the SAN MIGUEL video sequence.
The top image is rendered at 8,192 spp, which took more than 24 hours to
compute. The middle image is the input to our algorithm at 8 spp. The
bottom image is our result, produced in about 14 minutes. We can recover
fine features even though the detail is not visible in the noisy input.

6.5 Limitations and Future Work

Although our approach is reasonably fast, its bias at low sampling
rates produces results that are visibly different from the ground truth.
Figures 14 and 20 help to visualize this by showing the difference
in images produced by our algorithm and a reference rendering.
However, the images produced are of sufficient quality to be used
for previsualization in film production, especially given that the
result is achieved in only a few minutes.

Some of these differences are the result of limitations of our
approach. First of all, the cross-bilateral filter we are proposing is
isotropic in terms of the dimensions of the integral, since we sim-
ply compute the αk and βk weights by measuring the dependency
on all random parameters without distinguishing between them.
This could lead to artifacts such as the overblurring of the king’s
crown in the CHESS scene in Figure 9 or the back wall of the CAR

scene in the second row of insets in Figure 12. Extending the algo-
rithm to handle anisotropic filtering effects could lead to improved
results.

Furthermore, our filter can have difficulty with regions that have
a lot of high-frequency scene detail but also a significant amount
of Monte Carlo noise. We call this the “dueling filter” problem: on
the one hand the filter kernel should be as large as possible to filter
out the noise, but on the other it should be as small as possible
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Fig. 20. Our result differs from the reference MC, as shown by these
difference and intensity images (showing the norm of the error) for the
scene in Figure 19. The differences occur in regions of high-frequency detail
that our bilateral filter tries to preserve but ends up slightly overblurring
due to the significant amount of noise in the input image. The transparent
vase on the table also exhibits differences because the path-tracer does not
have enough rays at 8 samples/pixel to compute the interreflections inside
the glass.

so as to not overblur the important detail. Our bilateral filter tries
to preserve the scene detail that is not a function of the random
parameters, but it is not perfect and some of it is blurred. This can
be seen in the TOY GYRO scene of Figure 13, where the pilot’s face
in the inset is slightly blurred because our filter is trying to denoise
the glass in front of it. This also happens in the SAN MIGUEL scene
of Figures 1 and 19, where the floor has a lot of textured detail but
is also very noisy because of the global illumination. The bilateral
filter is able to recover a remarkable amount of detail from the noisy
information, but some of the texture is blurred.

A related failure case is shown in Figure 21, where an area light
source is casting both hard and soft shadows from the same object
onto the ground. Our formulation is able to detect the appropriate
dependencies (hard shadows do not depend on the random position
of the sample on the light source, while soft shadows do) and
attempts to preserve the edges between them, but because of the
large amount of noise in the soft shadow the edge gets slightly
blurred out. It would be interesting to find ways to extend our
formulation to address this dueling filter problem.

Another limitation is the way the screen coordinates are handled
differently from other random parameters, which means that our
RPF algorithm does not filter across these dimensions to perform
pixel antialiasing. Therefore, we see no benefit in regions where
there is little dependency on random parameters (e.g., pixels in
focus) because we do not filter there at all. These pixels might
remain noisy at low sampling rates, especially if there is a large
amount of detail in the pixel. This is really a sampling problem,
since we do not have enough samples to antialias the pixel correctly.
It might be possible in the future to reformulate our algorithm and
incorporate the screen coordinates into the filtering process.

In terms of directions of future work, there might be better ways
to address the mixing-of-statistics problem than the clustering algo-
rithm presented here. Currently, our clustering can produce artifacts
in certain scenes, for example, in the blurred region in a DoF scene
where a single pixel might get only foreground samples (instead
of a mix of foreground and background) which would cause this
pixel to not be blended properly. In addition, one might explore
new metrics for estimating functional dependency instead of mu-
tual information. Since our algorithm focuses exclusively on the
reconstruction filter, it might be possible to combine it with one of
the advanced adaptive sampling algorithms such as MDAS or AWR
for improved performance. In terms of speed, our current algorithm
was sufficiently fast for the purposes of this article, so we did not
worry about its optimization. However, it has the potential of be-
ing significantly accelerated because it is inherently parallel and
a possible candidate for implementation on the GPU. This could

Input Monte Carlo (8 samples/pixel)

Our approach (RPF)

Reference (1,024 samples/pixel)

Fig. 21. In this scene, the KILLEROO casts overlapping hard and soft shad-
ows from the same light source onto the floor. Although our algorithm
detects the transitions from hard to soft and tries to preserve the edge be-
tween them, it overblurs the hard shadows in the final result. The image on
the left is produced by our algorithm.

reduce the filtering time considerably and make the algorithm suit-
able even for accelerating fast, GPU-based Monte Carlo rendering
systems.

We note that this work represents only an initial effort in explor-
ing a new approach to denoising Monte Carlo rendering, and we
hope that other researchers will build upon the proposed approach
and explore its applications. For example, the problem of trying to
determine whether a particular feature is part of the scene or is an
artifact of the stochastic process is an issue in many MC render-
ing algorithms. Our insight that we can answer this question using
the functional dependencies between the feature and the random
parameters could also be used to improve these other algorithms.

7. CONCLUSION

We have presented a novel algorithm called Random Parameter Fil-
tering that removes noise in Monte Carlo rendering by estimating
the functional dependency between sample features and the random
inputs to the system. In order to approximate these functional rela-
tionships, we use a measure of statistical dependency called mutual
information, which is applied to a local neighborhood of samples
in each part of the image. This dependency is then used to reduce
the importance of certain scene features in a cross-bilateral filter,
which preserves important scene detail even in parts where we must
blur heavily to remove MC noise. The results produced by our
technique are computed in just a few minutes but are comparable
to reference renderings with a thousand times more samples. This
article is only the first effort to leverage the functional dependen-
cies on random parameters to denoise Monte Carlo renderings in
this manner. We expect that future improvements on the algorithm
by other researchers will continue to improve the quality of the
results.
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